Ways of regularization of materials science ill-posed problems
نویسندگان
چکیده
منابع مشابه
Learning, Regularization and Ill-Posed Inverse Problems
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...
متن کاملBound Constrained Regularization for Ill-Posed Problems
We consider large scale ill-conditioned linear systems arising from discretization of ill-posed problems. Regularization is imposed through an (assumed known) upper bound constraint on the solution. An iterative scheme, requiring the computation of the smallest eigenvalue and corresponding eigenvector, is used to determine the proper level of regularization. In this paper we consider several co...
متن کاملNonlinear regularization methods for ill-posed problems
In this paper we consider nonlinear ill-posed problems with piecewise constant or strongly varying solutions. A class of nonlinear regularization methods is proposed, in which smooth approximations to the Heavyside function are used to reparameterize functions in the solution space by an auxiliary function of levelset type. The analysis of the resulting regularization methods is carried out in ...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملProjected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems
The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Metallurgy and Heat Treatment of Metals
سال: 2019
ISSN: 2413-7405
DOI: 10.30838/j.pmhtm.2413.241219.47.600